Deep Belief Net Learning in a Long-Range Vision System for
Autonomous Off-Road Driving

Raia Hadsell'! Ayse Erkan' Pierre Sermanet'? Marco Scoffier?
Urs Muller? Yann LeCun'

(1) Courant Institute of Mathematical Sciences
New York University
New York, NY USA

Abstract— We present a learning-based approach for long-
range vision that is able to accurately classify complex terrain
at distances up to the horizon, thus allowing high-level strategic
planning. A deep belief network is trained with unsupervised
data and a reconstruction criterion to extract features from
an input image, and the features are used to train a realtime
classifier to predict traversability. The online supervision is
given by a stereo module that provides robust labels for nearby
areas up to 12 meters distant. The approach was developed and
tested on the LAGR mobile robot.

I. INTRODUCTION

Humans navigate effortlessly through most outdoor envi-
ronments, detecting and planning around distant obstacles
even in new, never-seen terrain. Shadows, hills, groundcover
variation - none of these affect our ability to make strategic
planning decisions solely based on visual information. These
tasks, however, are extremely challenging for a vision-
based mobile robot. Current robotics research has begun
to develop vision-based systems that can navigate through
offroad environments, but existing approaches often rely on
stereo algorithms, which produce short-range, sparse, and
noisy costmaps that are inadequate for long-range strategic
navigation. Stereo algorithms are limited by image resolu-
tion, and often fail when confronted by repeating or smooth
patterns, such as tall grass, dry scrub, or smooth pavement.
Some research has focused on increasing the range of vision
by classifying terrain in the far field according to the color of
nearby ground and obstacles. This type of near-to-far color-
based classification is quite limited, however. Although it
gives a larger range of vision, the classifier has low accuracy
and can easily be fooled by shadows, monochromatic terrain,
and complex obstacles or ground types.

The long-range vision system that we propose uses self-
supervised learning to train a classifier in realtime. To
successfully learn a complex environment, the classifier must
be trained with discriminative features extracted from large
image patches, and the features must be labeled with visu-
ally consistent categories. For the classifier to successfully
generalize from near to far field, the training samples must
be normalized with respect to scale and distance. The first
criterion, training with large image patches, is crucial for
true recognition of obstacles, paths, groundtypes, and other
natural features. Color histograms or texture gradients cannot
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replace the contextual information in actual image patches.
The second criterion, visually consistent labeling, is equally
important for successful learning. The classifier is trained
using labels generated by stereo processing. If the label
categories are inconsistent or very noisy, the learning will
fail. Therefore, our stereo-based supervisor module uses 5
categories that are visually distinct and contain as little error
as possible. The third criterion, normalization with respect
to size and distance, is necessary for good generalization.
We normalize the image by constructing a horizon-leveled
input pyramid in which similar obstacles are similar heights,
regardless of their distance from the camera.

The long-range vision classifier was developed and tested
as part of a full navigation system. The outputs from the clas-
sifier populate a hyperbolic polar coordinate costmap, and
planning algorithms are run on the map to decide trajectories
and wheel commands at each step. The long-range classifier
has been tested independently, and experiments have also
been conducted to assess the impact of the long-range vision
on the navigation performance of the robot. We show that
on multiple test courses, the long-range vision yields driving
that is smoother and more far-sighted. We also show the
performance of the classifier in several diverse environments.

The vision system described here was developed on the
LAGR platform (see Fig. 1). LAGR (Learning Applied to
Ground Robots) is a DARPA program [1] in which partic-
ipants must develop learning and vision algorithms for an
outdoor, offroad autonomous vehicle. The LAGR robot has
4 onboard computers, 2 stereo camera pairs, a GPS receiver,
and an IMU (inertia measurement unit). It has a maximum
speed of 1.2 meters/second.

II. PREVIOUS WORK

Many methods for vision-based navigation rely on stereo-
based obstacle detection [9], [11], [3]. A stereo algorithm
finds pixel disparities between two aligned images, producing
a 3d point cloud. By applying heuristics to the statistics
of groups of points, obstacles and ground are identified.
However, the resulting costmaps are often sparse and short-
range.

Recent approaches to vision-based navigation use learn-
ing algorithms to map traversability information to color



Fig. 1. The LAGR mobile robotic vehicle, developed by Carnegie
Mellon University’s National Robotics Engineering Center. Its
sensors consist of 2 stereo camera pairs, a GPS receiver, and a
front bumper.

histograms or geometric (point cloud) data. This is espe-
cially useful for road-following vehicles [2], [12], [8]; the
ground immediately in front of the vehicle is assumed to be
traversable, and the rest of the image is then filtered to find
similarly colored or textured pixels. Although this approach
helped to win the 2005 DARPA Grand Challenge, its utility
is limited by the inherent fragility of color-based methods.

Other, non-vision-based systems have used the near-to-far
learning paradigm to classify distant sensor data based on
self-supervision from a reliable, close-range sensor. Stavens
and Thrun used self-supervision to train a classifier to
predict surface roughness [16]. A self-supervised classifier
was trained on satellite imagery and ladar sensor data for
the Spinner vehicle’s navigation system [15]. An online self-
supervised classifier for a ladar-based navigation system was
trained to predict load-bearing surfaces in the presence of
vegetation [17].

Predictably, the greatest similarity to our proposed method
can be found in the research of other LAGR participants.
Since the LAGR program specifically focused on learning
and vision algorithms that could be applied in new, never-
seen terrain, using near-to-far self-supervised learning was a
natural choice [4], [6], [10].

Our approach differs from the aforementioned research
because it uses a deep belief network to extract features
from large image patches, then trains a classifier to learn to
discriminate these feature vectors into 5 classes. We build a
distance-normalized, horizon-leveled image pyramid to deal
with the limitations of generalization from near to far field.

III. OVERVIEW OF LONG RANGE VISION

The long-range vision system is a self-supervised, realtime
learning process (see Fig. 2). The only input is a pair of
stereo-aligned images, and the output is a set set of points in
vehicle-relative coordinates, each one labeled with a vector
of 5 energies, corresponding to 5 possible categories. The
points and their energy vectors are used to populate a large
polar coordinate map. Path planning algorithms are run on
the polar map, which in turn produce driving commands. The
outputs of the long-range vision module are accumulated in
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Fig. 3. The input image at top has been methodically cropped
and leveled and subsampled to yield each pyramid row seen at
the bottom. The furthest (top) pyramid row is taller because it
compresses the final rows into a single-scale ROI. The bounding
boxes demonstrate the effectiveness of the normalization: trees that
are different scales in the input image are similarly scaled in the
pyramid.

the polar cost map by maintaining a histogram of traversabil-
ity likelihoods for each cell of the map, an approach that
implicitly captures the confidence of the vision module with
respect to each area of the map. Details of the mapping and
planning process are given in [14].

IV. HORIZON-LEVELING AND NORMALIZATION

We are strongly motivated to use large image patches
(large enough to fully capture a natural element such as a
tree or path) because larger context and greater information
yields better learning and recognition. However, the problem
of generalizing from nearby objects or groundtypes to distant
targets is daunting, since apparent size scales inversely with
distance: Angular size ﬁ Our solution is to create
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a normalized pyramid of 7 suab-lmages which are extracted
at geometrically progressing distances from the camera.
Each sub-image is subsampled according to that estimated
distance, yielding a set of images in which similar objects
have a similar pixel height, regardless of their distance from
the vehicle (see Fig. 3). The closest pyramid row has a target
range from 4 to 11 meters away and is subsampled with a
scaling factor of 6.7. The furthest pyramid row has a range
from 112 meters to oo (beyond the horizon) and has a scaling
ratio of 1 (no subsampling).

A bias in the roll of the cameras, plus the natural
bumps and grading in the terrain, means that the horizon
is generally skewed in the input image. We normalize the
horizon position in the pyramid by explicitly estimating the
location of the horizon. First we estimate the groundplane
p = {po, 1,2, p3} using a Hough transform on the stereo
point cloud, then refine that estimate using a PCA robust
refit. Once p is known, the horizon can be leveled:

(0.5wp1) + p2 + p3
—Po

left-y-offset = — (0.5w sinb),
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Fig. 2. Diagram of the Long-Range Vision Process. The input to the system is a pair of stereo-aligned images. The images are normalized
and features and labels are extracted, then the classifier is trained and immediately used to classify the entire image. The classifier outputs
are accumulated in histograms in a hyperbolic polar map according to their (z,y) position.

Fig. 4. Each row in the normalized, horizon-leveled pyramid is created
by identifying the 4 corners of the target sub-image, which must be aligned
with the ground plane and scaled according to the target distance, and then
warping to a re-sized rectangular region.

where w is the width of the input image and 6 is the angle
of the skewed horizon as estimated from the ground plane
(see Fig. 4).

The input is also converted from RGB to YUV, and the Y
(luminance) channel is contrast normalized. Each y in Y is
normalized by the linear sum of a smooth 16x16 kernel and
a 16x16 neighborhood of Y (centered on y).

V. FEATURE LEARNING: DEEP BELIEF NETWORK

Normalized overlapping windows (3x12x25 pixels) from
the pyramid rows provide a basis for strong near-to-far
learning, but the dimensionality is still too high for realtime
learning. Feature extraction lowers the dimensionality while
increasing the generalization potential of the classifier. There
are many ways that feature extraction may be done, from
hand-tuned feature lists, to quantizations of the input, to
learned features. We prefer to use learned features, because
they can capture patterns in the data that are missed by a
human.

We have experimented in the past with extracting features
with radial basis functions and with supervised trained con-
volutional networks [5], but had only moderate success: the
radial basis functions, trained using k-means unsupervised
clustering, produced stable feature vectors that were not
discriminative enough and lead to weak online learning,
and the supervised convolutional network learned filters
that didn’t generalize well and caused unpredictable online
learning.

The current approach uses the principles of deep belief
network training [7], [13]. The basic idea behind deep belief

net training is to pre-train each layer independently and
sequentially in unsupervised mode using a reconstruction
criterion to drive the training. The deep belief net trained for
the long-range vision system consists of 3 stacked modules.
The first and third modules are convolutional layers, and the
second layer is a max-pooling unit. Each convolutional layer
can be understood as an encoder F.,.(X) that creates a
set of features from the given input by applying a sequence
of convolutional filters. A decoder Fy..(Y) tries to recreate
the input from the feature vector output. The encoder and
decoder are trained by minimizing the reconstruction error,
i.e., minimizing the mean square loss between the input and
the encoded and decoded reconstruction:

P
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where S is a dataset with P training samples. Given a
training sample X%, F.,.(X) and Fj..(Y) are trained in
a 2-pass process. An initial codeword Z;,;; is found by
computing F.,.(X?). The optimal codeword Z is then
learned through gradient descent optimization of £, then the
encoder and decoder weights are optimized through gradient
descent while keeping Z fixed. Details of this approach are
given in [13].

A. Deep Belief Net Architecture and Training

As stated, the network trained for feature extraction in
the long-range classifier consists of 3 stacked modules. The
first and third are convolutional layers, composed of a set
of convolutional filters and a point-wise non-linearity. The
function computed for an input layer = and filter f and output
feature map z is

Zj = tanh(cj(z T; * fij) + b])

where * denotes the convolution operator, ¢ indexes the input
layer, j indexes the output feature map, and c; and b; are
multiplicative and additive constants. The max-pooling layer
is used to reduce computational complexity and to pool
features, creating translation invariance. The max-pooling
operation, for input layer x and output map z, is

z; = max;en, ()
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Fig. 5. The feature maps are shown for a sample input. The input
to the network is a variable width, variable height layer from the
normalized pyramid. The output from the first convolutional layer
is a set of 20 feature maps, the output from the max-pooling layer
is a set of 20 feature maps with width scaled by a factor of 4
through pooling, the output from the second convolutional layer is
a set of 100 feature maps. A single 3x12x25 window in the input
corresponds to a single 100x1x1 feature vector.
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Fig. 6. Trained filters from both layers of the trained feature
extractor. Top: the first convolutional layer has 20 7x6 filters.
Bottom: the second convolutional layer has 300 6x5 filters.

where N; is the spatial neighborhood for max-pooling.

The first convolutional layer of the feature extractor has
20 7x6 filters, and 20 feature maps are output from the layer.
After max-pooling with a kernel size of 1x4, the pooled
feature maps are input to the second convolutional layer,
which has 300 6x5 filters and produces 100 feature maps.
Each overlapping window in the input has thus been reduced
to a 100x1x1 feature vector. The feature maps for a sample
input (a row in the normalized pyramid) are shown in Fig. 5.

The feature extractor was trained until convergence on
training images from 150 diverse outdoor settings (10,000
images in total). The convolutional filters are shown in Fig. 6.

VI. STEREO SUPERVISION

The supervision that the long-range classifier receives
from the stereo module is critically important. The realtime
training can be dramatically altered if the data and labels
are changed in small ways, or if the labeling becomes

noisy. Therefore, the goal of the supervisor module is to
provide data samples and labels that are visually consis-
tent, error-free, and well-distributed. The basic approach
begins with a disparity point cloud generated by a stereo
algorithm: S = {(z%,vy% 2") | i« = 1..n} where z¢, ¢,
Z' defines the position of the point relative to the robot’s
center. Color components (r¢, g% b") and image relative
coordinates (row’, column’, disparity’) are also associated
with each point in S. In the first step, the ground plane is
located within the point cloud and the points are separated
with a threshold into ground and obstacle point clouds.
Since rolling ground and tufts of long grass can look like
obstacles if a single groundplane is assumed, we employ
two strategies, multi-groundplane estimation and moments
filtering, to reduce these errors. In the second step, the
obstacle points are projected onto the ground plane to locate
the feet of obstacles. Third, overlapping regions of points are
considered and heuristics are used to assign each region to
one of five categories.

Multi-Groundplane Estimation The assumption that
there is a single perfect ground plane is rarely correct in nat-
ural terrain. To relax this assumption, we find multiple planes
in each input image and use their combined information to
divide the points into ground and obstacle clouds. After the
first ground plane is fitted to the point cloud, all points
that are within a tight threshold of the plane are removed
and a new plane is fit to the remaining points. The process
continues until no good plane can be found or a maximum
of 4 planes have been fit to the data. The ground planes are
fit by using a Hough transform to get an initial estimate of
the plane, then refining the estimate by locating the principle
eigenvectors of the points that are close to the initial plane.

Moments Filtering Even multiple ground planes cannot
remove all error from the stereo labeling process. Therefore,
we consider the first and second moments of the plane
distances of points and use the statistics to reject false
obstacles. The plane distance of each point in S is computed
by projecting the point onto each plane and recording the
minimum distance: pd(X*,P) = minpep(zia + y'b +
zic + d), where X' = (z,y%,2") is a point in S and
P = (a,b,c,d) defines a plane in P. We use the following
heuristics: if the mean plane distance is not too high (under
.5 m) and the variance of the plane distance is very low,
then the region is traversable (probably a traversable hillside).
Conversely, if the mean plane distance is very low but the
variance is higher, then that region is traversable (possibly
tall grass).

Footline Projection Identifying the footlines of obstacles
is critical for the success of the long-range vision classifier.
Footlines are not only visually distinctive and thus relatively
easy to model, they are also, by definition, at ground level,
and thus we have more confidence in their exact location
when they are mapped into 3d coordinates. To find footline
points, each obstacle point in S is projected onto the nearest
ground plane in P and its (row, column) image space
coordinates are recorded.
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Fig. 7. This shows the 5 labels applied to a full image.

Visual Categories Most classifiers that attempt to learn
terrain traversability are binary; they only learn ground vs.
obstacle. However, our supervisor uses 5 categories: super-
ground (only ground is seen in window), ground (lower
confidence), footline (footline is centered in window), super-
obstacle (only obstacle is seen in window), and obstacle
(lower confidence label). Given the partition of the point
cloud S into 3 subsets S, SO, and S¥' (ground, obstacle,
and footline), a set of heuristics is applied to overlapping
windows of the image and a probabilistic label is assigned
according to the relative concentrations of points from S¢,
SO, and S*' in each window. Fig. 7 shows examples of the
5 categories.

VII. REALTIME TERRAIN CLASSIFICATION

The long-range classifier trains on and classifies every
frame that it receives, so it must be relatively efficient.
A separate logistic regression is trained on each of the
5 categories, using a one-against-the-rest training strategy.
The loss function that is minimized for learning is the
Kullback-Liebler divergence or relative entropy. Loss =
Di1(P||Q) = S5 pilogp; — i, pilogq;, where p; is
the probability that the sample belongs to class ¢ calculated
from the stereo supervisor labels. g; is the classifier’s output
for the probability that the sample belongs to class .

exrp(WiX)
Gi=—f

2 k=1 €xP(WicX)
where w are the parameters of the classifier, and x is the
sample’s feature vector. The weights of each regression are
updated using stochastic gradient descent, since gradient
descent provides strong regularization over successive frames
and training iterations. The gradient update is
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VIII. RESULTS

The long-range vision system has been used extensively
in the full navigation system built on the LAGR platform. It
runs at 1-2 Hz, which is too slow to maintain good close-
range obstacle avoidance, so the system architecture runs 2
processes simultaneously: a fast, low-resolution stereo-based

obstacle avoidance module and planner run at §-10 Hz and
allow the robot to nimbly avoid obstacles within a 5 meter
radius. Another process runs the long-range vision and long-
range planner at 1-2 Hz, producing strategic navigation and
planning from 5 meters to the goal.

We present experimental results obtained by running the
robot on 2 courses with the long-range vision turned on
and turned off. With the long-range vision turned off, the
robot relies on its fast planning process and can only detect
obstacles within 5 meters. Course 1 (see Fig. 8 top and
Table 9) is a narrow wooded path that proved very difficult
for the robot with long-range vision off, since the dry scrub
bordering the path was difficult to see with stereo alone. The
robot had to be rescued repeatedly from entanglements off
the path. With long-range vision on, the robot saw the scrub
and path clearly and drove cleanly down the path to the goal.
Course 2 (see Fig. 8 bottom and Table 9) was a long wide
path with a clearing to the north that had no outlet - a large
natural cul-de-sac. Driving with long-range vision on, the
robot saw the long path and drove straight down it to the goal
without being tempted by the cul-de-sac. Driving without
long-range vision, the robot immediately turned into the cul-
de-sac and became stuck in scrub, needing to be manually
driven out of the cul-de-sac and restarted in order to reach
the goal.

Fig. 10 shows 5 examples of long-range vision in very
different terrain. The input image, the stereo labels, and the
classifier outputs are shown in each case.

IX. CONCLUSIONS

We have described, in detail, an self-supervised learning
approach to long-range vision in off-road terrain. The clas-
sifier is able to see smoothly and accurately to the horizon,
identifying trees, paths, man-made obstacles, and ground at
distances far beyond the 10 meters afforded by the stereo
supervisor. Complex scenes can be classified by our system,
well beyond the capabilities of a color-based approach. The
success of the classifier is due to the use of large context-
rich image windows as training data, and to the use of a deep
belief network for learned feature extraction.
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