Adaptive Long Range Vision in Unstructured Terrain
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Abstract— A novel probabilistic online learning framework
for autonomous offroad robot navigation is proposed. The
system is purely vision-based and and is particularly designed
for predicting traversability in unknown or rapidly changing
environments. It uses self-supervised learning to quickly adapt
to changing terrains after processing a small number of frames,
and it can recognize terrain elements such as paths, man-
made structures, and natural obstacles at ranges up to 30
meters. A convolutional neural network, trained offline, is used
to extract discriminative features for the online classifier. The
system is developed on the LAGR mobile robot platform and
the performance is evaluated using multiple metrics, including
ground truth information.

I. INTRODUCTION

Autonomous off-road robot navigation in unknown envi-
ronments is a challenging task. One major difficulty is the
detection of obstacles and traversable areas when no prior
information about the terrain is known. Long range vision
is crucial, especially for robotics tasks where efficient goal-
driven planning and driving is the goal. Depending on image
resolution and processor speeds, stereo algorithms are gen-
erally only accurate up to 10 to 12 meters, whereas in open
land, camera images contains information far beyond that.
This work focuses on conveying the short range knowledge
of the environment to long range vision via self-supervised
near-to-far learning.

The diversity of the terrain and the lighting conditions of
outdoor environments make it difficult to employ a database
of obstacle templates or features, or other forms of pre-
defined static description collections, which in turn neces-
sitates the use of machine learning techniques. This paper
proposes the use of learned adaptation skills for autonomous
robots in offroad outdoor courses, which have high variability
in visual content.

The learning architecture comprises two parts, an offline-
trained feature extraction module that provides an initial
notion of the world in the form of discriminative feature
vectors. The feature extractor is trained offline on many
environments that the robot was previously exposed to, and
an online learning module that enables adaptation to any
new, unseen terrain. The proposed system does not require
any human intervention or labeling at any level, which is
an advantage in terms of practicality and implementation
concerns.

The proposed approach was developed as part of the
navigation framework on the LAGR (Learning Applied to

(2) Net-Scale Technologies
Morganville, NJ USA

Ground Robots) robot platform. For details of the LAGR
program and platform, see [1].

II. PREVIOUS WORK

Statistical learning techniques have been used to improve
autonomous navigation systems for a decade or more. These
early systems, including ALVINN [13] by Pomerlau, MA-
NIAC [5] by Jochem et al., and DAVE [9] by LeCun et
al.; use supervised learning to map visual input to steering
angles. Many other systems have been proposed that rely on
supervised classification [12], [4]. These systems are trained
offline using hand-labeled data. Hand labeling, unfortunately,
requires a lot of human effort and offline training limits the
scope of the robot’s expertise to environments seen during
training.

To overcome these limitations, navigation systems have
been developed that are capable of learning traversability
labels directly from the environment. They do this through
self-supervision: a reliable sensor provides traversability in-
formation that is then learned, either online or in batch
mode at intervals, by a classifier that operates on data
from another, less reliable sensor. Not only is the burden
of hand-labeling relieved, but the system becomes flexible
to new environments. This strategy has proved especially
useful for road-following systems, which can use simple
color and texture information to track the shape and position
of a road. Self-supervised learning helped win the 2005
DARPA Grand Challenge: the winning team used a simple
probabilistic model to identify road surface based on color
histograms extracted immediately ahead of the vehicle as
it drives [3]. In a slightly more complicated approach by
Thrun et al.; previous views of the road surface are computed
using reverse optical flow, then road appearance templates
are learned for several target distances [10].

Several other approaches have followed the self-
supervised, learning strategy. Stavens and Thrun used self-
supervision to train a terrain roughness predictor [15]. An
online probabilistic model was trained on satellite imagery
and ladar sensor data for the Spinner vehicle’s navigation
system [14]. Similarly, online self-supervised learning was
used to train a ladar-based navigation system to predict
the location of a load-bearing surface in the presence of
vegetation [17]. A system that trains a pixel-level classifier
using stereo-derived traversability labels is presented by
Ulrich [16]. Recently Kim et al. [6] proposed an autonomous



offroad navigation system that estimates traversability in an
unstructured, unknown outdoor environment.

The proposed system incorporates feature extraction and
label propagation into an online learning framework that
is designed for maximum flexibility and adaptability in
changing, offroad environments.

III. OVERVIEW OF THE SYSTEM

As mentioned previously, the proposed long range obstacle
detection system comprises (LROD) two parts, a feature
extractor that is used primarily for dimensionality reduction
and to derive the more discriminative information in the data,
and an online module that learns the traversablity of the
terrain using the stereo labels in an adaptive manner. The
feature extraction is done with a multi-layer convolutional
network trained offline with data from log files captured in
various environments. The features are then used as inputs
to the online module as the robot traverses a course.

For each pair of stereo images received, the long range
module does a series of procedures, including pre-processing,
feature extraction, training, and classification steps. The steps
in one full processing cycle are listed in Table I, along
with the average processing time for each step. Section IV
discusses the image pre-processing and the feature extraction,
and Section VI describes the online label propagation and
training strategies. The proposed approach was tested using
two complementary evaluation measures, and results are
presented in Section VIL.

IV. IMAGE PRE-PROCESSING

On every processing cycle, the long range module receives
a pair of stereo color images at a resolution of 320x240. In
order to train a classifier on these images, the visual data
in the images must be transformed into discrete windows
of information and the windows must be labeled with a
traversability value. This section describes the pre-processing
and labeling steps.

A. Ground Plane Estimation

The first step is to rectify the images and run
a stereo algorithm, the result of which is a point
cloud in RCD (row, column, disparity) space:

P = (Tla C1, dl)? (7’2, C2, d2)7 aS) (Tnv Cn, dn) The “TriCIOPS”
stereo algorithm was developed by Point Grey Research,
the vendors of the Bumblebee cameras used by the robot.
From the point cloud P, the ground plane can be estimated:
a necessary step for assigning traversability labels. The
ground plane is estimated initially using a Hough transform,
then refined using a PCA refit on the points that are within a
threshold of the initial plane. Finding a ground plane allows
us to map pixels in the image to XYZ locations in the real
world and to determine their distance from the plane. The
ground plane is thus the basis of much of our processing,
allowing computation of stereo labels, correspondance
of image data and real world coordinates, distance/scale
normalization, and horizon leveling.

B. Contrast Normalization

The input image is converted to the YUV color space
and normalized. The U and V color channels are normalized
using an individual mean and variance for each channel, but
the Y channel, which contains the luminance information,
is normalized over small neighborhoods in order to protect
texture and image information while alleviating the effect
of dark shadows and bright sunlight. Pixel x in image I is
normalized by the values in a soft window centered on z:
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, where IV is a 16x16 window in I and K is a smooth,
normalized 16x16 kernel.

C. Horizon Leveling and Scale-Normalized Pyramid

Image pyramids have been used for image processing for
decades (see [2]), and more recently have been used for
scale-invariant object recognition (see [11]). We developed a
pyramid-based approach to the problem of distance and scale
in images. The classifier is expected to generalize from near-
range image windows to long-range image windows, but this
is extremely difficult because of the effect of distance on
scale.

Our solution is to build a distance-normalized image
pyramid by extracting sub-images at different target distances
in the image and subsampling them to a uniform height. The
result is that similar obstacles in the image (e.g., a tree at 10
meters away and a similar tree at 30 meters away) appear
in different rows in the pyramid at a similar scale (e.g.,
both trees are 12 pixels high), making it easier to generalize
from one to the other (see Figure 1). Each pyramid row is
centered around an imaginary footline on the ground that
is a fixed distance from the robot. There are 24 footlines
and corresponding pyramid rows: their distances form a 26
geometric progression, with the closest at 0.5 meters and the
furthest at 30 meters. The rows have a uniform height of 20
pixels and a width that varies from 36 pixels to 300 pixels.

D. Stereo Labeling

The stereo algorithm produces a point cloud of RCD val-
ues (row, column, disparity), and the distance of each point
from the ground plane can be computed once the parameters
of the plane have been estimated. Building a traversability
map from these points can be done with simple heuristics.
The points are collected in bins that correspond to the real
world coordinates of windows in the pyramid. Heuristics are
used to decide whether each bin is a traversable (ground)
or non-traversable (obstacle) location. The bin could also
be given a label of blocked, if there is a nearby obstacle
that occludes that bin’s location. Some windows in the
pyramid can thus be labeled (ground, obstacle, or blocked)
according to the RCD points at the footline of the window
(see Figure 2). After stereo labeling, the pyramid windows
have labels as follows:

1) obstacle: There is an obstacle at the footline of the
window.



TABLE I
OVERVIEW OF PRINCIPLE PROCESSING STEPS IN THE VISION SYSTEM.

Ordering | Processing Step Processing Time

Pre-processing

1 Image rectification and point cloud extraction 45 ms

2 Ground plane estimation 43 ms

3 Conversion to YUV and normalization 67 ms

4 Horizon leveled, distance-normalized pyramid 60 ms
Labeling

5 Stereo labeling of windows in pyramid 20 ms
Feature Extraction

6 Feature extraction (convolutional neural network) 385 ms
Label Propagation

7 Query quad-tree for matching windows 1 ms

8 Label query results with probabilistic labels 0 ms

9 Insert feature vectors into quad-tree 0 ms

10 Add labeled samples to ring buffer 1 ms
Online Training and Classification

11 Train logistic regression on ring buffer contents 55 ms

12 Classify all windows in pyramid using trained regression 12 ms

\ | Total \ 653 ms

(a). sub-image extracted from
far range. (21.2 m from robot).

(b). sub-image extracted at
close range. (2.2 m from robot). corresponding to sub-images at left.

(c). the pyramid, with rows (a) and (b)

Fig. 1. Sub-images are extracted according to imaginary lines on the ground (computed using the estimated ground plane). (a) Extraction
around a footline that is 21m away from the vehicle. (b) Extraction around a footline that is 1.1m away from the robot. The extracted
area is large, because it is scaled to make it consistent with the size of the other bands. (¢) All the sub-images are subsampled to 20

pixels high.

Fig. 2. The 3 possible labels: left: the footline is on open ground, so
label = ground; center: the base of the object is on the footline, so
label = obstacle; right: the footline is blocked by a nearby object,
so label = blocked.

2) blocked: The footline is occluded by some object in
front of it.

3) ground: The location corresponding to the window’s
footline is traversable.

V. FEATURE EXTRACTION

A classifier can’t be trained online using large color
windows: the computational burden would be too high for
runtime processing. In addition, we want to extract dis-
criminative features from the input windows. Therefore, a

Fig. 3.
training show a sensitivity to horizontal boundary lines

The kernels learned by the feature extractor using offline

convolutional neural network is used to extract features from
the color input windows.

Convolutional neural networks have been used success-
fully in areas such as speech and handwritten character
recognition; see [8], [7]). A convolutional network contains
local receptive fields that are trained to extract local features
and patterns. It also contains subsampling, so that detected
features are pooled. The architecture of a convolutional
network makes it naturally shift and scale invariant, so it
is ideal for learning visual features for navigation.



The convolutional network trained for feature extraction
has two convolutional layers and one subsampling layer. The
first convolutional layer has 48 7x6 filters, shown in Figure 3,
and the second layer has 240 filters. The filters show that the
network is very responsive to horizontal structures, such as
obstacle feet and other visual boundaries. The network was
trained on a data set obtained by computing labels over a
diverse set of 130 logfiles.

The network produces feature vectors with 240 features.

VI. ONLINE LEARNING

Throughout this paper, online learning is used to refer
to the process of learning the long-range (up to 30m)
traversability information of the terrain in real-time from the
stereo during the robots course. More specifically, the long
range module learns how to discriminate the input windows
in the distance normalized and scale invariant pyramid as
one of three classes, obstacle, traversable or blocked.

At every video processing cycle, a traversability label is
associated with each window in stereo range and stored in
a quadtree data structure according to its XYZ coordinates
in the robot’s local coordinate system. Therefore, as the
robot proceeds in its environment it collects features and
corresponding stereo labels in this map.

From this collection, soft-labels for the pyramid windows
are calculated as the ratio of each label in the quadtree
cell corresponding to that window. This, in turn, softens the
classification decision boundary and eliminates the effects
of the fluctuations in binary stereo labels due to noise in
the stereo, illumination changes of the environment from
different views, errors in local pose, etc.

A. Logistic Regression

The online learner was chosen to be a log-linear module
in order to provide lightweight computation for the training
at each cycle of video processing. The extracted features X
are written to a class-balanced ring buffer, so that samples
from previous frames can be reused in the case that there
aren’t a sufficient number of labeled samples from current
frame.

The labels are continuous values indicating the probability
of a sample belonging to one of the three classes: occluded,
traversable, blocked. The classifier is a logistic regression
module and the loss function that is minimized for learning
is the Kullback-Liebler divergence or relative entropy (See
Figure 4).

Dis(PIQ) = 3 pa)log )

Loss : Kullback- Liebler divergence between the two
distributions.
Loss = Z rilogr; — Zyilogyi
where

r; : Desired probability that sample belongs to class i.
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Fig. 4. Online Learning Architecture.

The outputs are calculated as follows,
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The gradient of the Loss with respect to the weights and
the update rule,
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A crucial hyper-parameter in online learning is the learn-
ing rate, i.e. the size of the update step per sample. A well
known drawback of high learning rate is over fitting or loss of
generalization due to overly quick adaptation to recently seen
samples. This causes a memory loss; i.e., the learned notion
of the environments disappear after a while and the robot
performs poorly on terrain it has forgotten. One solution is
to choose a low 7, but this has the disadvantage of lowering
the adaptability to new environments. Thus there is a trade-
off between responsiveness vs generalization. Figure 6 shows
a comparison of classification performance for low and high
learning rates. With high 7 the performance of the classifier
for far range is even lower than the not using learning at all.

VII. RESULTS
A. Offline Error Assesment

The performance of the long range detection system can
be easily illustrated qualitatively, as in Figure 9, where
the labels from the stereo and the outputs of the network
are projected on to the image space. On the other hand,
direct quantitative error assessments during the course of
the robot are not feasible. This requires measuring every
single pyramid window’s real distance from the robot and
checking the classifier’s output and whether there’s an object
there. Therefore, we take offline measurements of LROD’s
performance over the logs after the robots’s run.

One way of measuring classification performance is to
collect the stereo labels for the entire course of the robot

i

if i=j
otherwise



in a map. When the logs are reviewed, this will provide
the true class for the windows that don’t have stereo labels
at hand in a particular frame. Therefore, the classifier’s
outputs for unlabeled windows can be compared against
these labels. Figure 5 illustrates such a collection of stereo
labels over the course shown on the left. The graph in
Figure 6 shows a comparison of the classification error for
different configurations averaged from a test set of logs.

Fig. 5. Right image shows the collection of stereo labels, which
provide an answer key for offline testing for the course seen in the
image on the left. The robot traverses the soil path for about 100
meters

B. Ground truth error

As mentioned earlier the long range obstacle detection
system learns to detect the traversability of the footlines in
the robot’s range of view. In order to have a quantitative
measure of the systems performance human operator sparsely
labels several frames from each file in a collection of logs,
by tracing obstacle foot lines in the images.

Given the ground truth and long range vision module
images, at each direction from the robot’s view point, the
closest obstacles are compared along each column of both
images as highlighted in Figure 7(c).

The possible scenarios are:

« matched: both ground truth and the long range system
found an obstacle in the column, the reported error is
the distance between those two obstacles

« fake: only the long range system found an obstacle, the
error is the maximum distance along the column

o missed: only ground truth found an obstacle, the error
is the maximum distance along the column.

Two error metrics are employed, image space and real
space. In image space, the distance in pixels of the
groundtruth and the network outputs projected onto image
space. In local world coordinates, the row and columns are
first converted into distance from the robot, in meters, then
the resulting distance is the absolute difference of the logs
of each distance. The log function is used to normalize the
distance errors, to avoid penalizing big errors in meters since
here the goal is to measure the performance of an image
space classifier. For both cases, the errors are reported.

e Ofm and Quo1qi—fm: error ratio of fake and missed

obstacles

o 0q and Psora1—q: error ratio of matched obstacles

e Ofma and Ototai— fma: error ratio of fake, missed and

matched obstacles

Let d(row1, row2, i) be the function that given a column
i in the input image, returns the distance measure between
rowl and row2 of this column. When computing the image
space measure, d is defined as:

dimg(rowl, row2,i) = |rowl — row?)|
When computing the real space measure, d is defined as:
dyeat (rowl, row2, i) = |log(real (i, rowl))—log(real (i, row?))|

The distance error of fake and missed obstacles and of
matched obstacles are computed as follow:

e i) = d(min, max, 1) if obstacle is fake or missed
Fmi =19 0 otherwise
(i) = d(gt_row,net_row,1) if obstacle is matched
=1 0 otherwise

where min and max are the range in which we compare the
network with the groundtruth. The error ratio is the distance
error over the maximum possible distance error for a frame:

_ iz Epm(i)

Cym = o, d(min, maz, i)

2iz15a(i)

Ga = i d(min, maz, ) * matched

where matched is 1 if obstacles match, O otherwise. The
combined error ratio of fake, missed and matched is a score
where fake and missed errors have more weight than distance
errors. Indeed fake and missed errors are worse than distance
errors.

o i £m (i) + (i)
fma = ST d(min, maz, 1) + (1 + matched)

Finally, the overall error ratios over m frames, which indicate
the overall error of fake and missed, matched or both, is:

m
Ototal—{ fma,fm,a} = Z O{fma,fm,a}
j=1

One can interpret the ground truth comparison visually,
with Figure 7(c) where big overlayed stripes of red or pink
show the fake and missed obstacles and blue and yellow
lines show matched obstacle. Or one can use the error ratios,
which are good to compare different systems over the whole
set of groundtruth frames.

Table II reports the accumulative ground truth test error
from 16 different logs files and a total of 70-75 labelled
images. The ratio of missed and fake foot lines from the
closest object detected falls from 52.7% to 39.9%. This
indicates that there is a significant improvement from the
offline trained system to online learning system. And learning
with soft-labels outperforms using binary labels clearly.
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Fig. 6. Accumulated offline test error for different ranges over 9 log files from different terrains. On the left, the classification error
without any online training, in the middle online training with low learning rate and on the right online training with high n are shown.
When 7 is high, the error for far bands is even higher than the untrained system, which indicates the generalization is lost.

The distances for the bands are as follows. Far Range [30m - 14.9m], Mid-Range [14.9m - 5.3m], Short Range [5.3m -2.6m]

See section VII-A for the test setting.

(a) ground truth labeled image (b) FAR-OD labeled image (c) comparison of g-truth and FAROD
FAR-OD's first obstacle [l Fake obstacle

[ 1\G-truth's first obstacle Missed obstacle

" N

Unknown Traversable Foot of obstacle

0 25 50 75 0 25 50 75 100
14.25 He ©Q fin fake & missed obstacles ratio

EE -
_ Q, matched obstacles distance error ratio
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©Q finamatched & fake & missed obstacles ratio

Image space measure
Real space measure

Fig. 7. Ground truth comparison images. Image (a) results from human labeling. Image (b) results from FAR-OD labeling. Image (c)
highlights fake and missed errors in red and pink, and shows what obstacles were found by ground truth (yellow) and FAR-OD (blue).

TABLE I
GROUND TRUTH TEST ERROR

Log Real Log Log Real | Image Space Image Image Space
Missed Real Error Missed Space Error
and Fake | Distance Score and Fake Distance Score
(Qfm) (Qa) (Qfma) (Qfm) (Qa) (Qfma)
No Online Learning 52.7 0.44 26.0 52.5 7,76 44.6
Binary Labels 46.9 0.54 23.3 46.9 8.05 40.0
Soft Labels 39.9 0.57 19.8 39.8 9.09 34.4

VIII. CONCLUSIONS AND FUTURE WORKS

A long traversability detection system with a range up to
30m is presented. An offline trained feature extractor, which

represents a initial notion of the world, is combined with an
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Fig. 8. Examples of desirable classification performance. The left frame shows the input image; the center frame shows the stereo labels
that are used to train the classifier; the right frame shows the traversability labels returned by the classifier. Pink is obstacle, green is
traversable, and black is unknown. Note that stereo labels are generally sparse and have a maximum range of 12 meters (the last ground
lines are always black), whereas the classifier outputs are smooth and consistent and extend to 30 meters. In these examples, obstacles,

paths, and traversable are accurately seen far beyond stereo range.

Fig. 9. Examples of poor classification performance. The above examples demonstrate failure modes in the system. If the ground plane
estimate is faulty (top left), classification is very difficult. Strong shadows or other phenomena can cause inconsistent, difficult to explain
classifier behavior (bottom left). Extreme lighting changes and sun glare often cause false obstacles (bottom right).

online classifier trained these features from a scale-invariant
image pyramid. The system gives 85% overall classification
accuracy for offline tests over the logs.

One immediate future direction is to relax the single plane
fit assumption which would allow the robots perform better
in uneven or hilly surfaces. Another one is to embed visual
SLAM to the current system. Also an open problem is
the active learning of the input samples to preserve online
learning over time for long courses.
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